Chapter 9 Solution

Exercise 23

1. (a)
$$P = 360000 \left(1 + \frac{3}{(100)(2)} \right)^{(2)(8)}$$

P = 456834.7972

P = 456800 EUR

By TVM Solver:

N = 8

I% = 3

PV = -360000

PMT = 0

FV = ?

P/Y=1

C/Y=2

PMT:END

P = 456800 EUR

A1 N3

A1

[3]

(M1)(A1) for correct equation

(M1)(A1) for substitution

(M1)(A1) for correct values

N3

(b)
$$Q\left(1+\frac{3}{(100)(12)}\right)^{(12)(8)} = 456834.7972$$

 $Q(1.0025)^{96} = 456834.7972$

Q = 359466.6239

Q = 359500 EUR

0 EUR A1 N3

By TVM Solver: N = 8

1% = 3

PV = ?

PMT = 0

FV = 456834.7972

P/Y=1

C/Y = 12

PMT: END

Q = 359500 EUR

(M1)(A1) for correct values

A1 N3

2. (a) The amount of money

$$=125000\left(1+\frac{8}{100}\right)^{12}$$

(M1)(A1) for substitution

$$=314771.2646$$

A1 N3

$$N = 12$$

$$1\% = 8$$

$$PV = -125000$$

$$PMT = 0$$

$$FV = ?$$

$$P/Y=1$$

$$C/Y=1$$

$$(M1)(A1)$$
 for correct values

The amount of money is \$315000.

[3]

(b)
$$125000 \left(1 + \frac{8}{100}\right)^t = 250000$$

$$1.08^{t} = 2$$

$$1.08^t - 2 = 0$$

By considering the graph of $y = 1.08^t - 2$,

$$t = 9.0064683$$
.

Thus, the minimum number of years is 10.

By TVM Solver:

$$N = ?$$

$$1\% = 8$$

$$PV = -125000$$

$$PMT = 0$$

$$FV = 250000$$

$$P/Y=1$$

$$C/Y=1$$

(M1)(A1) for correct values

Thus, the minimum number of years is 10.

3. (a)
$$P\left(1 + \frac{4}{(100)(4)}\right)^{(4)(5)} = 87000$$

(M1)(A1) for correct equation

$$P(1.01)^{20} = 87000$$

$$P = 71300.36892$$

$$P = 71300$$

A1 N3

$$N = 5$$

$$I\% = 4$$

$$PV = ?$$

$$PMT = 0$$

$$FV = 87000$$

$$P/Y=1$$

$$C/Y=4$$

$$P = 71300$$

(M1)(A1) for correct values

(M1)(A1) for correct equation

[3]

(b)
$$P\left(1+\frac{4}{(100)(4)}\right)^{4t} = 2.5P$$

$$1.01^{4t} = 2.5$$

$$1.01^{4t} - 2.5 = 0$$

By considering the graph of $y = 1.01^{4t} - 2.5$,

$$t = 23.021615$$
.

Thus, the minimum number of years is 24.

Thus, the minimum number of years is 24.

By TVM Solver:

$$N = ?$$

$$1\% = 4$$

$$PV = -71300$$

$$PMT = 0$$

$$FV = 178250$$

$$P/Y=1$$

$$C/Y=4$$

PMT: END

(M1)(A1) for correct values

A1 N3

4.
$$640000 \left(1 + \frac{5}{(100)(2)}\right)^{2t_1} = 1280000$$

(M1)(A1) for correct equation

(M1)(A1) for correct values

$$1.025^{2t_1} = 2$$

$$1.025^{2t_1} - 2 = 0$$

By considering the graph of $y = 1.025^{2t_1} - 2$,

 $t_1 = 14.035517$.

By TVM Solver:

N = ?

1% = 5

PV = -640000

PMT = 0

FV = 1280000

P/Y=1

C/Y=2

PMT: END

Thus, $t_1 = 14.035517$.

 $640000 \left(1 + \frac{5}{(100)(4)}\right)^{4t_2} = 1280000$ (M1)(A1) for correct equation

 $1.0125^{4t_2} = 2$

 $1.0125^{4t_2} - 2 = 0$

By considering the graph of $y = 1.0125^{4t_2} - 2$,

 $t_2 = 13.949408$.

By TVM Solver:

N = ?

1% = 5

PV = -640000

PMT = 0

FV = 1280000

P/Y=1

C/Y=4

PMT: END

Thus, $t_2 = 13.949408$.

 $t_1 - t_2 = 14.035517 - 13.949408$

 $t_1 - t_2 = 0.086109$

 $t_1 - t_2 = 0.0861$

(M1) for valid approach

(M1)(A1) for correct values

A1 N6

[6]

Exercise 24

1. (a)
$$P = 54000 \left(1 + \frac{6}{(100)(12)} \right)^{(12)(10)}$$

(M1)(A1) for substitution

P = 98247.42364

$$P = 98000 \text{ EUR}$$

A1 N3

By TVM Solver:

$$N = 10$$

$$1\% = 6$$

$$PV = -54000$$

$$PMT = 0$$

$$FV = ?$$

$$P/Y=1$$

$$C/Y = 12$$

PMT: END

$$P = 98000 \text{ EUR}$$

(M1)(A1) for correct values

(M1)(A1) for correct equation

A1 N3

[3]

(b)
$$54000 \left(1 + \frac{r}{(100)(4)}\right)^{(4)(10)} = 98247.42364$$

$$54000 \left(1 + \frac{r}{400}\right)^{40} - 98247.42364 = 0$$

By considering the graph of

$$y = 54000 \left(1 + \frac{r}{400} \right)^{40} - 98247.42364, \ r = 6.03005.$$

Thus, r = 6.03.

A1 N3

By TVM Solver:

$$N = 10$$

$$I\% = ?$$

$$PV = -54000$$

$$PMT = 0$$

$$FV = 98247.42364$$

$$P/Y=1$$

$$C/Y=4$$

PMT: END

Thus, r = 6.03.

A1 N3

2. (a)
$$P\left(1 + \frac{9}{(100)(2)}\right)^{(7)(2)} = 1600000$$

(M1)(A1) for substitution

P = 863956.5796

$$P = 860000$$

A1 N3

By TVM Solver:

$$N = 7$$

$$1\% = 9$$

$$PV = ?$$

$$PMT = 0$$

$$FV = 1600000$$

$$P/Y=1$$

$$C/Y=2$$

$$P = 860000$$

A1 N3

[3]

(b)
$$863956.5796 \left(1 + \frac{9}{100}\right)^n = 16000000$$

(M1)(A1) for correct equation

(M1)(A1) for correct values

 $863956.5796(1.09)^n - 1600000 = 0$

By considering the graph of

$$y = 863956.5796(1.09)^n - 1600000$$
,

$$n = 7.1507643$$
.

Thus,
$$n = 7.15$$
.

A1 N3

By TVM Solver:

$$N = ?$$

$$1\% = 9$$

$$PV = -863956.5796$$

$$PMT = 0$$

$$FV = 1600000$$

$$P/Y=1$$

$$C/Y=1$$

Thus, n = 7.15.

(M1)(A1) for correct values

A1 N3

3.
$$\left(1 + \frac{12}{(100)(4)}\right)^{(4)(4)} = \left(1 + \frac{12}{(100)(12)}\right)^{(12)(n)}$$

(M1)(A1) for correct equation

 $1.03^{16} = 1.01^{12n}$

(M1) for simplification

 $1.03^{16} - 1.01^{12n} = 0$

By considering the graph of $y = 1.03^{16} - 1.01^{12n}$,

n = 3.9608468.

Thus, n = 3.96.

A1 N4

[4]

4. $\left(1 + \frac{5}{(100)(2)}\right)^{(2)(8)} = \left(1 + \frac{5}{100k}\right)^{(k)(7.98)}$

(M1)(A1) for correct equation

 $1.025^{16} = \left(1 + \frac{1}{20k}\right)^{7.98k}$

(M1) for simplification

 $1.025^{16} - \left(1 + \frac{1}{20k}\right)^{7.98k} = 0$

By considering the graph of $y = 1.025^{16} - \left(1 + \frac{1}{20k}\right)^{7.98k}$,

k = 2.5125342.

Thus, k = 2.51.

A1 N4

[4]

Exercise 25

1. (a)
$$P\left(1+\frac{7}{100}\right)^4 = 300000$$

(M1)(A1) for substitution

$$P = 228868.5636$$

$$P = 229000$$

A1 N3

$$N = 4$$

$$I\% = 7$$

$$PV = ?$$

$$PMT = 0$$

$$FV = 300000$$

$$P/Y=1$$

$$C/Y=1$$

(M1)(A1) for correct values

$$P = 229000$$

A1 N3

[3]

A1 N1

[1]

$$=228868.5636 \left(1 + \frac{5.4}{100}\right)^4$$

(A1) for substitution

$$=282454.558$$

A1 N2

$$N = 4$$

$$1\% = 5.4$$

$$PV = -228868.5636$$

$$PMT = 0$$

$$FV = ?$$

$$P/Y=1$$

$$C/Y=1$$

PMT: END

(A1) for correct values

Thus, the real value is \$282000.

A1 N2

[2]

2. Let r% be the nominal annual interest rate (a) compounded yearly.

$$(1+r\%)^9 = \left(1 + \frac{12}{(100)(12)}\right)^{(12)(9)}$$

(M1)(A1) for substitution

$$1 + r\% = 1.01^{12}$$

$$r = 12.68250301$$

The real interest rate per year

$$=12.68250301\% -1.8\%$$

=10.88250301%

=10.9%

(M1) for valid approach

A1 N4

The real value of amount of interest (b)

$$=8500 \left(1 + \frac{10.88250301}{100}\right)^9 - 8500$$

(M1)(A1) for substitution

N3 **A**1

$$N = 9$$

$$I\% = 10.88250301$$

$$PV = -8500$$

$$PMT = 0$$

$$P/Y=1$$

$$C/Y=1$$

(A1) for correct values

The real value of amount of interest

$$=21537.04494-8500$$

(M1) for valid approach

$$=13037.04494$$

[3]

[4]

3. (a) Let r% be the real interest rate per year.

$$2800 \left(1 + \frac{r}{100} \right)^{12} = 4000$$

(M1)(A1) for substitution

$$2800 \left(1 + \frac{r}{100} \right)^{12} - 4000 = 0$$

By considering the graph of

$$y = 2800 \left(1 + \frac{r}{100} \right)^{12} - 4000, \ r = 3.016904692.$$

Thus, r = 3.02.

A1 N3

$$N = 12$$

$$1\% = ?$$

$$PV = -2800$$

$$PMT = 0$$

$$FV = 4000$$

$$P/Y=1$$

$$C/Y=1$$

(M1)(A1) for correct values

Thus, r = 3.02.

A1 N3

[3]

(b) The rate of inflation per year

$$=4\%-3.016904692\%$$

(M1) for valid approach

$$=0.9830953083\%$$

$$=0.983\%$$

A1 N2

[2]

4. (a) Let r% be the nominal annual interest rate compounded yearly.

$$(1+r\%)^8 = \left(1 + \frac{9.2}{(100)(4)}\right)^{(4)(8)}$$

(M1)(A1) for substitution

$$1 + r\% = 1.023^4$$

$$r = 9.522294784$$

The real interest rate per year

$$=9.522294784\% -i\%$$

$$=(9.5223-i)\%$$

(M1) for valid approach

(M1)(A1) for substitution

(M1)(A1) for correct values

[4]

(b)
$$14500 \left(1 + \frac{9.5223 - i}{100} \right)^8 = 18500$$

$$14500 \left(1 + \frac{9.5223 - i}{100}\right)^8 - 18500 = 0$$

By considering the graph of

$$y = 14500 \left(1 + \frac{9.5223 - i}{100} \right)^8 - 18500,$$

$$i = 6.4301811$$
.

Thus,
$$i = 6.43$$
.

A1 N3

$$N = 8$$

$$1\% = ?$$

$$PV = -14500$$

$$PMT = 0$$

$$FV = 18500$$

$$P/Y=1$$

$$C/Y=1$$

PMT: END

$$i = 9.5223 - 3.092118852$$

$$i = 6.430181148$$

$$i = 6.43$$

A1 N3

Exercise 26

1. (a) By TVM Solver:

N = 20

1% = 7.5

PV = 0

PMT = ?

FV = 60000

P/Y=1

C/Y=1

PMT: BEGIN

PV = -1288.86651

Thus, the value of the regular payment per year is

\$1290.

A1 N3

[3]

(M1)(A1) for correct values

(M1)(A1) for correct values

(b) By TVM Solver:

N = ?

1% = 7.5

PV = 0

PMT = -1788.86651

FV = 60000

P/Y=1

C/Y=1

PMT: BEGIN

N = 16.67555757

Thus, the number of years required is 16.7 years. A1 N3

2. (a) By TVM Solver:

$$N = 5 \times 12$$

$$1\% = 3$$

$$PV = 0$$

$$PMT = -1000$$

FV = ?

$$P/Y = 12$$

$$C/Y=1$$

PMT: END

FV = 64580.96194

Thus, the value of the investment after five years is

\$64600.

A1 N3

(M1)(A1) for correct values

(M1)(A1) for correct values

[3]

(b) By TVM Solver:

$$N = 5 \times 12$$

$$1\% = 3$$

$$PV = 0$$

$$PMT = -1500$$

$$FV = ?$$

$$P/Y = 12$$

$$C/Y=1$$

PMT: END

FV = 96871.44291

The value of the investment after ten years

$$=64580.96194\times(1+3\%)^5+96871.44291$$

$$=171738.4778$$

$$=$$
\$172000

A1 N3

3. (a) By TVM Solver:

 $N = 15 \times 4$

1% = 5

PV = 0

PMT = -300

FV = ?

P/Y=4

C/Y=1

PMT:END

FV = 26374.85909

Thus, the value of the investment after fifteen years

is \$26400.

A1 N3

(M1)(A1) for correct values

(M1)(A1) for correct values

[3]

(b) By TVM Solver:

 $N = 30 \times 4$

1% = 5

PV = 0

PMT = ?

 $FV = 3.5 \times 26374.85909$

P/Y=4

C/Y=1

PMT: END

PMT = -341.0277664

Thus, the new amount of deposit is \$341.

A1 N3

4. (a) By TVM Solver:

$$N = 8 \times 12$$

$$1\% = 2.9$$

$$PV = 0$$

$$PMT = -100$$

$$FV = ?$$

$$P/Y = 12$$

$$C/Y=1$$

PMT : BEGIN

Thus, the value of the investment after eight years

for annuity X is \$10800.

A1 N3

(M1)(A1) for correct values

(M1)(A1) for correct values

[3]

(b) By TVM Solver:

$$N = 8 \times 12$$

$$1\% = 2.9$$

$$PV = 0$$

$$PMT = -200$$

$$FV = ?$$

$$P/Y=12$$

$$C/Y=1$$

PMT : BEGIN

FV = 21598.61903

The value of the investment after sixteen years for

annuity X

$$=10799.30951\times(1+2.9\%)^8+21598.61903$$

$$=35172.96727$$

$$=$$
\$35200

A1 N3

[3]

(c) By TVM Solver:

$$N = 16 \times 12$$

$$1\% = 2.9$$

$$PV = 0$$

$$PMT = ?$$

FV = 35172.96727

P/Y=12

C/Y=1

PMT: BEGIN

PMT = -144.3072994

Thus, p = 144.

A1 N2

(A1) for correct values

[2]

Exercise 27

1. (a) (i) By TVM Solver:

N = 144

1% = 3.7

PV = 1900000

PMT = ?

FV = 0

P/Y = 12

C/Y=1

PMT: END

PMT = -16303.73311

Thus, the amount of monthly payment is

\$16300.

A1 N3

(ii) The total amount to be paid

=(16303.73311)(144)

(M1) for valid approach

(M1)(A1) for correct values

= 2347737.568

=\$2350000

A1 N2

(iii) The amount of interest paid

=2347737.568-1900000

(M1) for valid approach

(M1)(A1) for correct values

= 447737.5678

=\$448000

A1 N2

(b) (i) By TVM Solver:

N = ?

1% = 3.4

PV = 1900000 - 350000

PMT = -17500

FV = 0

P/Y=12

C/Y=1

PMT: END

N = 101.8779513

Thus, the number of months to repay the

loan is 102 months.

A1 N3

(ii) The total amount to be paid

=350000+(17500)(102)

(M1) for valid approach

=\$2135000

A1 N2

[7]

	(iii)	The amount of interest paid			
		= 2135000 - 1900000	(M1) for valid approach		
		= \$235000	A 1	N2	
					[7]
(c)	The amount of monthly payment in option 1 is				
	less than that in option 2.		R1		
	Thus,	the option 1 is better.	A1	N2	
					[2]
(d)	The amount of interest paid in option 2 is less than				
	that i	n option 1.	R1		
	Thus,	the option 2 is better.	A 1	N2	
					[2]

2. (a) (i) By TVM Solver: N = 361% = 4.5PV = 40000 - 10000PMT = ?(M1)(A1) for correct values FV = 0P/Y = 12C/Y=1PMT: END PMT = -891.1985089Thus, the amount of monthly payment is \$891. **A**1 N3 (ii) The amount of interest paid =(891.1985089)(36)+10000-40000(M1)(A1) for substitution =2083.146321=\$2080**A**1 N3 [6] (b) (i) By TVM Solver: N = ?1% = 4.5PV = 40000PMT = -800(M1)(A1) for correct values FV = 0P/Y = 12C/Y=1PMT:END N = 55.34864756

Thus, the number of months to repay the

loan is 56 months.

A1 N3

(ii) The amount of interest paid = (800)(56) - 40000 (M1)(A1) for substitution = \$4800 A1 N3

[6]

(c) The amount of monthly payment in option 2 is less than that in option 1. R1
Thus, the option 2 is better. A1

N2

N2

(d) The amount of interest paid in option 1 is less than that in option 2. R1
Thus, the option 1 is better. A1

[2]

[2]

(e) By TVM Solver:

N = 60 I% = ? PV = 40000 PMT = -900 FV = 0 P/Y = 12 C/Y = 1 PMT : END

(M1)(A1) for correct values

I% = 13.24614765

Thus, r = 13.2. A1 N3

3. (a) (i) By TVM Solver:

N = 120

1% = 2

PV = 10000

PMT = ?

FV = 0

P/Y = 12

C/Y=1

PMT:END

PMT = -91.93240592

Thus, the amount of monthly payment is

\$91.9.

A1 N3

(ii) The amount of interest paid

=(91.93240592)(120)-10000

(M1)(A1) for substitution

(M1)(A1) for correct values

(M1)(A1) for correct values

(M1)(A1) for correct values

=1031.88871

=\$1030

A1 N3

[6]

(b) (i) By TVM Solver:

N = 60

1% = 2

PV = 10000

PMT = -91.93240592

FV = ?

P/Y=12

C/Y=1

PMT: END

FV = -5247.330813

Thus, the amount of the loan after 5 years is

\$5247.330813.

By TVM Solver:

N = ?

1% = 2

PV = 5247.330813

PMT = -91.93240592 - 60

FV = 0

P/Y=12

C/Y=1

PMT:END

N = 35.59078942

Thus, the number of months to repay the

loan is 96 months.

A1 N5

(ii) The amount of interest paid
= (91.93240592)(60)
+(91.93240592+60)(36)-10000
= 985.5109683
= \$986

A1 N3

(iii) The amount of interest paid in option 2 is less than that in option 1. R1 N1

[9]

(c) (i) By TVM Solver:

N = ? I% = 2 PV = 10000 PMT = -91.93240592×1.5 FV = 0 P / Y = 12 C / Y = 1 PMT : END

(M1)(A1) for correct values

N = 77.30461672

Thus, the number of months to repay the

loan is 78 months. A1 N3

(ii) 18 months A1 N1

[4]

4. (a) (i) By TVM Solver:

$$N = 20$$

$$1\% = 2$$

$$PV = 50000$$

$$PMT = ?$$

$$FV = 0$$

$$P/Y=1$$

$$C/Y=1$$

PMT: BEGIN

$$PMT = -2997.878339$$

Thus,
$$R_1 = 3000$$
.

A1 N3

(M1)(A1) for correct values

(M1)(A1) for correct values

(ii) By TVM Solver:

$$N = 20$$

$$1\% = 2$$

$$PV = 50000$$

$$PMT = ?$$

$$FV = 0$$

$$P/Y=1$$

$$C/Y=1$$

$$PMT = -3057.835906$$

Thus,
$$R_2 = 3060$$
.

A1 N3

- (iii) The difference between the total amounts to be paid for the version 1 and the version 2 A1 N1
- (iv) Version 1

A1 N1

[8]

(b) (i) By TVM Solver:

$$N = 240$$

$$1\% = 2$$

$$PV = 50000$$

$$PMT = ?$$

$$FV = 0$$

$$P/Y=12$$

$$C/Y=1$$

$$PMT = -252.5132304$$

Thus,
$$R_3 = 253$$
.

A1 N3

- (ii) The amount of interest paid in version 3
- A1

(M1)(A1) for correct values

(iii) The amount of interest paid in version 2

=(3057.835906)(20)-50000

(M1) for valid approach

=\$11156.71812

The amount of interest paid in version 3

=(252.5132304)(240)-50000

(M1) for valid approach

=\$10603.1753

Hence, the version 3 will have the smaller total amount to be paid.

A1 N3

[7]