AI SL Practice Set 1 Paper 1 Solution

1.	(a)	The area of the rectangle = 46200000 cm^2 = $4.62 \times 10^8 \text{ cm}^2$	A2	N2	[2]		
(b)		The percentage error = $\left \frac{45000000 - 462000000}{462000000}\right \times 100\%$ = 2.597402597%	(A1)	for substitution	[-]		
		= 2.60%	A1	N2	[2]		
2. (a)		$u_{10} = 181$ $\therefore 100 + (10 - 1)d = 181$ 9d = 81 d = 9		(A1) for correct equation A1 N2			
	(b)	208	A1	N1	[2]		
	(c)	The total number of seats			[1]		
	$=\frac{15}{2} \left[2(100) + (15-1)(9) \right]$			(A1) for substitution			
		= 2445	A1	N2	[2]		
3.	(a)	The mean ball speed = $\frac{80+76+100+66+40+116+90+76}{8}$ = 80.5 kmh ⁻¹		for correct formula			
	(b)	(i) $78 \mathrm{kmh}^{-1}$	A1	N1	[2]		
		(ii) $21.3 \mathrm{kmh}^{-1}$	A1	N1			
		(iii) 76 kmh ⁻¹	A1	N1	[3]		

[3]

4.	(a)	y > 250 20x > 250 x > 12.5		(M1) for setting inequality		
		Thus, the minimum number of tickets is 13.	A1	N2	[2]	
	(b)	y = 90 + 5x	A1	N1	[²]	
	(c)	20x = 90 + 5x 15x = 90 x = 6 The amount of money = 20(6)		(M1) for setting equation		
				(A1) for correct value		
		=120 USD	A1	N3	[3]	
5.	(a)	(i) $x = 5$	A2	N2		
		(ii) $y = 4$	A2	N2	[4]	
	(b)	f(x) = 0				
		$\frac{2-4x}{5-x} = 0$ 2-4x = 0 2 = 4x	(M1) ⁻	for setting equation		
		$x = \frac{1}{2}$	A1	N2		
		-			[2]	

6.	(a)	H_0 : The gender and the teaching subjects are		N14	
		independent.	A1	N1	[1]
	(b)	The expected number = $\frac{(35+10+65+45)(10+35)}{300}$ (155)(45)	A1		[']
		$=\frac{(155)(45)}{300}$ = 23.25	AG	N0	[1]
	(c)	The <i>p</i> -value			
		= 0.00002306699185	(A1)	for correct value	
		= 0.0000231	Â1	N2	
					[2]
	(d)	The null hypothesis is rejected.	A1		
		As the p -value is less than 5%.	R1	N2	
					[2]
7.	(a)	(i) $r = \frac{3}{4}$	A1	N1	
		(ii) $u_4 = 10368$	A1	N1	[2]
	(b)	$u_7 = 24576 \left(\frac{3}{4}\right)^{7-1}$ $u_7 = 4374$	(M1)	for substitution	[2]
		$u_8 = 24576 \left(\frac{3}{4}\right)^{8-1}$ $u_8 = 3280.5$			
		Thus, the smallest term in the sequence that is		No	
		an integer is $u_7 = 4374$.	A1	N2	
	(c)	S_{27}			[2]
		$=\frac{24576\left(\left(\frac{3}{4}\right)^{27}-1\right)}{\frac{3}{4}-1}$	(A1)	for substitution	
		=98262.38736			
		=98300	A1	N2	[2]

[2]

8.	(a)	The expected number = $(13)(0.25)$ = 3.25	(A1) 1 A1	for substitution N2	[2]
	(b)	The variance = $(13)(0.25)(1-0.25)$ = 2.4375	(A1) 1 A1	or substitution	[2]
	(c)	The required probability = $\binom{13}{8}(0.25)^8(1-0.25)^{13-8}$ = 0.0046602041	(A1) 1	or substitution	[]
		= 0.004666	A1	N2	[2]
9.	(a)	$\cos A\hat{B}C = \frac{AB^2 + BC^2 - AC^2}{2(AB)(BC)}$	(M1)	for cosine rule	
		$\cos A\hat{B}C = \frac{28^2 + 41^2 - 32^2}{2(28)(41)}$ $\cos A\hat{B}C = 0.6276132404$	(A1) f	for substitution	
		$ABC = 51.12574956^{\circ}$ $ABC = 51.1^{\circ}$	A1	N3	[3]
	(b)	The area of the park = $\frac{1}{2}$ (AB)(BC)sin ABC	(M1)	for area formula	
		$=\frac{1}{2}(28)(41)\sin 51.12574956^{\circ}$	(A1) f	or substitution	
		$= 446.873514 \text{ m}^2$ $= 447 \text{ m}^2$	A1	N3	[3]

10.	(a)	(ii)	The gradient of L $= -1 \div \frac{5-1}{7-5}$ $= -1 \div 2$ $= -\frac{1}{2}$ The equation of L: $y-4 = -\frac{1}{2}(x-4)$ $y = -\frac{1}{2}x+6$	A1	for valid approach N2 for substitution N2	
	(b)		rly's office is on the boundary separating ronoi cells of the restaurant B and the	I		[4]
		restaur	ant C , which is equidistant to them.	R1	N1	[1]
11.	(a)	N = 120 I% = 3. PV = 9. PMT = FV = 0 P / Y = C / Y = PMT : 1 PMT =	3 50000 ? 12 12	(M1)(A1) for correct valu	es
	(b)	\$9310.		A1	N3	[3]
	(b)	=(9305	5.412721)(120) 6649.527	(M1) 1	for valid approach	
	(c)	=\$1120	0000 nount of interest paid	A1	N2	[2]
	(0)	=11166 =\$166	549.527 – 950000 649.5265		for valid approach	
		=\$167	000	A1	N2	[2]

12.	(a)	The amount of bacteria = 100×2^8 = 25600	(A1) for correct approach A1 N2 [2]			
	(b)	(i) $100 = a \times b^0$ a = 100	(M1) A1	for setting equation N2		
		(ii) $25600 = 100 \times b^{24}$ $b^{24} = 256$ $b^{24} - 256 = 0$ By considering the graph of $y = b^{24} - 256$, $b = 1.259921$.	(M1)	for setting equation		
		$\therefore b = 1.26$	A1	N2	[4]	
13.		$a = 1, \ b = \pi^{-0.1}$	A2	N2	[2]	
	(b) (c)	The estimate of $\int_{0}^{0.5} f(x) dx$ = $\frac{1}{2} (0.1) \Big[1 + \pi^{-0.5} + 2(\pi^{-0.1} + \pi^{-0.2} + \pi^{-0.3} + \pi^{-0.4}) \Big]$ = 0.3811259104 = 0.381 Overestimate	(A2) A1 A1	for substitution N3 N1	[3]	
14.	(a)	150	A1	N1	[1]	
	(b)	15	A1	N1	[1] [1]	
	(c)	y = a(x - (-5))(x - 15) y = a(x + 5)(x - 15) 150 = a(0 + 5)(0 - 15) 150 = -75a	(A1)	for correct approacl		
		a = -2 $\therefore y = -2(x+5)(x-15)$	A1	N2		
		$y = -2(x^{2} - 10x - 75)$ $y = -2x^{2} + 20x + 150$	(A1) for correct app		ſ	
		$\therefore b = 20$	A1	N2	[4]	

[4]