AI SL Practice Set 3 Paper 2 Solution

1.	(a)	a = 5.6 $b = 34.$	8	A1 A1	N1 N1	[2]
	(b)	The es = 5.6(6 = 70.0	stimated hardness 5.3)+34.8 8	(A1) fo A1	or substitution N2	[2]
	(c)	The re $=\frac{120}{12}$ $=\frac{8}{12}$	equired probability - <u>56</u> 0	(M1) f A1	or valid approach N2	[2]
	(d)	15 (i)	Let <i>X</i> be the number of selected ingots of the hardness at least 65, where $X \sim B\left(10, \frac{8}{15}\right)$.			[2]
			The required probability = $P(X = 5)$ = 0.2406733955 = 0.241	(M1) f A1	or valid approach N2	
		(ii)	The required probability = $P(X < 4)$ = 0.1226252054 = 0.123	(M1) f A1	or valid approach N2	
		(iii)	$\frac{16}{3}$	A1	N1	
	(e)	(i)	$H_1: \mu_1 \neq \mu_2$	A1	N1	[5]
		(ii)	<i>p</i> -value = 0.0741679182 <i>p</i> -value = 0.0742	(A1) fo A1	or correct value N2	
		(iii)	The null hypothesis is not rejected. As p -value > 0.05.	A1 R1	N2	

2. The volume (a) $=\pi r^2 h$ $=\pi(4)^{2}(15)$ (A1) for substitution $= 240\pi$ cm³ A1 N2 [2] (b) The total surface area $=2\pi r^2+2\pi rh$ $= 2\pi(4)^2 + 2\pi(4)(15)$ (A1) for substitution $=152\pi$ cm² A1 N2 [2] A1 N1 (C) 26 [1] $l^2 h = \pi r^2 h$ (d) (M1) for setting equation $l^2 = \pi r^2$ $\therefore l^2 = \pi(4)^2$ (A1) for substitution $l = \sqrt{16\pi}$ l = 7.089815404 cm $l = 7.09 \, \mathrm{cm}$ A1 N3 [3] (e) The total surface area of the new container $=2l^{2}+4lh$ M1 $= 2(7.089815404)^2 + 4(7.089815404)(15)$ A1 $= 525.9198891 \,\mathrm{cm}^2$ $>152\pi$ cm² R1 Thus, the claim is agreed. A1 N0 [4]

3.	(a)	(i)	H_0 : The punctuality of buses and the					
			locations of bus stops are independent.	A1	N1			
		(ii)	H_1 : The punctuality of buses and the					
			locations of bus stops are not independent.	A1	N1	[0]		
	(b)	8		A1	N1	[2]		
	(c)	$\chi^2_{calc} =$	19.37210492	(A1) f	or correct value	[1]		
		$\chi^2_{calc} =$	19.4	A1	N2			
	(d)	The n	ull hypothesis is rejected.	A1		[2]		
	(4)	As χ^2_{c}	$_{dc} > 15.507$.	R1	N2			
	(e)	(i)	The required probability			[2]		
			$=\frac{48}{500}$	(A1) f	or correct formula			
			$=\frac{12}{125}$	A1	N2			
		(ii)	The required probability					
			$=\frac{15+13+8+11+8}{500}$	(A1) f	or correct formula			
			$=\frac{11}{100}$	A1	N2			
		(iii)	The required probability					
			$=\frac{11}{15+13+8+11+8}$	(A1) f	or correct formula			
			$=\frac{1}{5}$	A1	N2			
	(f)	The re	equired probability			[6]		
	. /	$=\left(\frac{74}{50}\right)$	$= \left(\frac{74}{500}\right) \left(\frac{74-1}{500-1}\right) \left(\frac{74-2}{500-2}\right)$		(A2) for correct formula			
		= 0.00 = 0.00	31303088 313	A1	N3	[3]		

4.	(a)	<i>P</i> (0) =	=116					
		a+b	$b \times c^0 = 116$ = 116	(M1) A1	for setting equation N2			
	<i>4</i>					[2]		
	(b)	<i>P</i> (1) =	=172					
		$\therefore a + $	$b \times c^{-1} = 172$	(M1)	for setting equation			
		$a + \frac{b}{c}$	=172	A1	N2			
		c				[2]		
	(c)	(i)	$\log_c 81 = 4$					
			$\therefore c^4 = 81$	M1				
			$c^4 = 3^4$	A1				
			<i>c</i> = 3	AG	NO			
			(a+b-116)					
		(ii)	The system is $\begin{cases} a+b=110\\ +\frac{1}{3}b=172 \end{cases}$.	(M1)	for valid approach			
			Solving, we have $a = 200$ and $b = -84$.	A2	N3			
						[5]		
	(d)	The r	number of elephants	<i>(</i> - - <i>.</i>)				
		=200	0-84×3-3	(M1)	for substitution			
		=190 =197	.000007	A1	N2			
						[2]		
	(e)	200		A1	N1			
	(1)	200			Constant of the second state	[1]		
	(†)	200-	$84 \times 3^{-} > 195$	(M1) for setting inequality				
		$3-64\times 5 > 0$ By considering the graph of $y=5-84\times 2^{-t}$						
		$t=2^{t}$	5681297					
		Thus.	, the number of years needed is 2.57					
		years		A1	N2			
						[2]		

(g)	By considering the graphs of $y = 200 - 84 \times 3^{-t}$,								
	y = 170, $y = 180$ and $y = 190$, y reaches 170,								
	180 and 190 at $t_1 = 0.9372$, $t_2 = 1.3062702$ and								
	$t_3 = 1.9372$ respectively.	M1A1							
	$\therefore 2(t_2 - t_1)$								
	=2(1.3062702-0.9372)								
	= 0.7381404								
	$\neq t_3 - t_2$	R1							
	Thus, the claim is disagreed.	A1	N0						

[4]

5.	(a)	(i)	(4,8)	A2	١	N2	
		(ii)	$\{y: 4 \le y \le 8, y \in \mathbb{R}\}$	A2	١	12	F 4 1
	(b)	f'(x))				[4]
	()	= -0	= -0.25(2x) + 2(1) + 0		(A1) for correct derivative		
		=-0	.5x + 2	A1	1	N2	
							[2]
	(C)	f'(x)) = -1	M1			
		∴-0	5x + 2 = -1	A1			
		-0.5	x = -3	Α1			
		f(6)		,,,,			
		=-0	$.25(6)^2 + 2(6) + 4$	M1			
		=7					
		Thus	s, the coordinates of P are (6,	7). AG) (10	
							[4]
	(d)	The					
		y-7	=-l(x-6)	(A ²	1) for	substitution	
		y - /	=-x+6	A 4		10	
		x + y	-13 = 0	AI	ſ	NZ	[0]
	(e)	(i)	4	A1	٢	N1	[2]
	(-)	(.)			•		
		(ii)	5.75	A1	١	N1	
			0				[2]
	(f)	The	estimate of $\int_0^s f(x) dx$				
		$=\frac{1}{2}($	$=\frac{1}{2}(1)\left[4+4+2\left(5.75+7+7.75\right)+8+7.75+7+5.75\right)\right]$		2) for	substitution	
		= 53		A1	١	٨3	
							[3]
	(g)	Unde	erestimate	A1	١	N1	
							[1]